
Limites et continuité MATHS

Série 1

On note E(x) la partie entière de x, l’unique entier tel que : x−1 < E(x) ⩽ x ou encore E(x) ⩽ x < E(x)+1.
Exercice 1 :

Calculer les limites en 0 et en +∞ des fonctions suivantes si elles existent.√
x+

√
x+

√
x−

√
x,

E(x)

x
, xE

(
1

x

)
, x2E

(
1

x

)
Exercice 2 :

Soit a, b > 0. Donner la limite en 0 des expressions suivantes :

tan(ax)

tan(bx)
, (1 + ax)

b

x ,

√
a+

1

x
−

√
1

x

Exercice 3 :
Calculer les limites des fonctions définies par les expressions en ci-dessous en a :

cos(πx)

2x2 + x− 1

(
a =

1

2

)
,
sin(4πx)

tan(πx)

(
a =

1

2

)
Exercice 4 :

Soit f la fonction numérique définie sur R par :
f(x) =

√
2 + cos x−

√
3

x2
;x ̸= 0

f(0) = −
√
3

12

1) Montrer que f est continue en x0 = 0.

2) a) Montrer que : (∀x ∈ R∗) ; |f(x)| ⩽ 2
√
3

x2
;

b) En déduire : lim
x→+∞

f(x)

Exercice 5 :
Soit f la fonction numérique définie sur l’intervalle ]− π

2
;+∞[ par :

f(x) =
1− cos3 x

x · sinx · cosx
;x ∈

]
−π

2
; 0
[

f(x) =
3
√
1 + x2 −

√
x

2 +
√
x

;x ∈ [0; +∞[

1. Calculer lim
x→+∞

f(x) et lim

x→
−π+

2

f(x)

2. Étudier la continuité de la fonction f au point x0 = 0

Exercice 6 :

Soit f la fonction numérique définie par : f(x) = 2x+
x2 − 5x+ 6

|x2 − 9| − |x− 3|
1. Déterminer D l’ensemble de définition de la fonction f .
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2. La fonction f admet-elle un prolongement par continuité au point x0 = 3 ?
Exercice 7 :

Soit f la fonction numérique définie par : f(x) =
(1− tanx)2

1 + cos(4x)
1. Déterminer D l’ensemble de définition de la fonction f

2. (a) Soit h un élément de l’ensemble
]
0;

π

2

[
−
{π

4

}
;

Montrer que : f
(π
4
+ h

)
=

2 tan2 h

(1− tanh)2 · sin2(2h)

(b) Montrer que la fonction f admet un prolongement par continuité en
π

4
.

Exercice 8 :

Soit f la fonction numérique définie sur R+par : f(x) =
cosx−

√
1 +

sinx

2
x

.
Montrer que f est prolongeable par continuité en 0.

Exercice 9 :
1. Montrer que l’équation :

√
x− x3 + 2x− 1 = 0 admet au moins une solution dans l’intervalle ]0; 1[.

2. Montrer que l’équation : sinx = 1− x admet une solution unique dans l’intervalle
]
0;

π

6

[
.

3. Montrer que la courbe de la fonction f telle que : f(x) = x5 + 3x3 + 4x− 5 coupe l’axe des abscisses en
un unique point d’abscisse a tel que 0 < a < 1.

Exercice
Soit f : [0;π/2] → R définie par

f(x) =
√
sinx+ x

Justifier que f réalise une bijection vers un intervalle à préciser, puis que f−1 est continue et dérivable sur
cet intervalle.

Exercice 10 :
Soit λ et γ ∈ R∗

+ et f une fonction continue sur [0; 1] telle que : f(0) ̸= f(1).
Montrer que : ∃ x0 ∈]0; 1[, λf(0) + γf(1) = (λ+ γ)f (x0)

Exercice 11 :
Soient f : I → R et g : I → R deux fonctions continues telles que

∀x ∈ I, |f(x)| = |g(x)| ≠ 0.

Montrer que f = g ou f = −g.

Exercice 12 :
Soit f : R → Z continue. Montrer que f est constante.

Exercice 13 :
Calculer :
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lim
x→0

x+ 2 sinx

2 tan 3x− x
lim
x→0

4x− sin 2x

x+ tan 3x
lim
x→0

1− cos 3x

x2

lim
x→0

cosx− 1

x sin 3x
lim
x→0

cos 3x− cosx

x2
lim
x→0

cosx+ cos 3x− 2

x2

lim
x→0

2 sinx− sin 2x

x3
lim
x→1

sin(πx)

x− 1
lim
x→π

1 + cos x

sinx

lim
x→0

1 + sin x

1− cosx
lim

x→+∞

sinx

x
lim

x→+∞

3− 2 cosx

x2 + 1

lim
x→−∞

2x− 3 sinx

2 cos 3x− 5x
lim
x→0

cos ax− cos bx

x2
lim
x→0
x<0

1 + cos x

sinx

Un résultat à connaître : Toute suite réelle monotone bornée est convergente (a une limite finie). De
plus, toute suite monotone admet une limite.

Exercice 14 : (classique)
On considère les fonctions fn : x 7→ xn + x− 1 pour n ∈ N∗.
1. Soit n ∈ N∗. Démontrer que l’équation fn(x) = 0 admet une unique solution xn ∈ ]0, 1[.
2. Montrer que, pour tout n > 0, fn+1(xn) < fn+1(xn+1)

En déduire que (xn) est strictement croissante.
3. Montrer que (xn) converge vers une limite ℓ et que 0 < ℓ ⩽ 1.
4. Montrer que ∀n > 0, xn ⩽ ℓ.
5. Montrer par l’absurde que ℓ = 1.

Exercice 15 :
On définit pour tout n ∈ N la fonction fn par : fn(x) = x5 + nx− 1.
1. Étudier la fonction fn.
2. Montrer que pour tout n > 1, il existe une unique solution à l’équation fn(x) = 0. On la notera un.

3. Montrer que ∀n > 0, 0 ⩽ un ⩽
1

n
.

Exercice 16 :
On considère pour n > 0 la fonction : fn(x) = xn + x2 − 1.
1. Montrer que fn admet un unique zéro xn dans R∗

+, et que xn ⩽ 1.
2. Montrer que fn(xn+1) ⩾ fn(xn).

Déduire que (xn) est convergente. On note ℓ sa limite.
3. Montrer que ℓ = 1.

Exercice 17 :
Pour tout entier n ≥ 2, on définit la fonction fn par fn(x) = xn + 1− nx.
1. Montrer que, pour chaque entier n ≥ 2, l’équation xn + 1 = nx possède une unique solution dans l’in-
tervalle [0, 1], notée xn.
2. Déterminer la monotonie de la suite (xn)n et montrer sa convergence.

3. Justifier que : ∀n ≥ 2, 0 ⩽ xn ⩽
2

n
. En déduire lim

n→+∞
xn.

4. Déterminer la limite de (xn
n). Déduire la limite de (nxn).

Exercice 18 :
On considère, pour tout entier naturel n, la fonction fn : x 7→ x3 + nx+ n.
1. Montrer que l’équation fn(x) = 0 possède une unique solution un sur R.
2. Montrer que −1 ⩽ un ⩽ 0.
3. Déterminer la monotonie de la suite (un).
4. Prouver que lim

n→+∞
un = −1.

3



Limites et continuité MATHS

5. Montrer que lim
n→+∞

n(un + 1) = 1 et que lim
n→+∞

n2

(
un + 1− 1

n

)
= −3.

Exercice 19 :
1. Montrer que l’équation tan(x) = x admet une unique solution sur l’intervalle

]
nπ − π

2
, nπ +

π

2

[
, qu’on

notera un (on supposera n ∈ N pour la suite).
2. Quelle est la limite de la suite (un) ?
3. Montrer que arctan (un) = un − nπ, déduire la limite de (un − nπ).

4. Trouver la limite de
(
n
(
un − nπ − π

2

))
.

Exercice 20 :
Soit f une fonction continue sur R telle que lim

x→+∞
f(x) = − lim

x→−∞
f(x) = +∞.

Montrer que f admet une racine sur R.

Exercice 21 :
Soit f une fonction définie sur R et a ∈ R.

Montrer que f est continue en a ⇔ ∀(xn) ∈ RN si lim
n→+∞

xn = a alors lim
n→+∞

f(xn) = f(a).

Exercice 22 :

Soit n un entier naturel non nul. On considère la fonction Pn définie sur [0,+∞ [ par : Pn(x) =
2n∑
k=1

(−1)kxk

k

1- Montrer que (∀x ⩾ 0)P ′
n(x) =

x2n − 1

x+ 1
2- Étudier les variations de Pn et dresser le tableau de variation
3- Montrer que Pn(1) < 0

4- (a) Vérifier que Pn+1(x) = Pn(x) + x2n+1

(
x

2n+ 2
− 1

2n+ 1

)
(b) Déduire que (∀n ∈ N∗)Pn(2) ⩾ 0.

5- Montrer que l’équation Pn(x) = 0 admet dans [1,+∞ [ une solution xn et 1 < xn ⩽ 2.

Exercice 23 :

Pour tout n ∈ N∗, on définit le polynôme Pn par : ∀x ∈ R, Pn(x) = −1 +
n∑

k=1

xk.

1. Soit n ∈ N∗. Montrer que l’équation Pn(x) = 0 admet une unique solution xn dans R∗
+, et que 0 < xn ⩽ 1.

2. Montrer que (xn)n∈N∗ converge. On note ℓ sa limite.

3. Montrer que ℓ =
1

2
.

4. Montrer que 2n+2

(
xn −

1

2

)
→

n→+∞
1.

Exercice 24 :
Soit k ∈ R∗

+.
1. Montrer que pour n ∈ N∗, l’équation fn(x) = xk+1 + xk − n = 0 admet une unique solution xn dans R∗

+

2. Étudier les variations de xn.
3. Étudier la limite éventuelle de (xn).
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