
Intégrales d’une fonction continue sur un segment M

Cours : Intégrales d’une fonction continue sur un segment

La construction des intégrales est hors programme, on admet alors leur existence dans ce
cours, mais je vous laisserai la construction dans un autre document sur mon site.

1 Définition

On admet l’existence d’une fonction allant de l’espace des fonctions continues sur [a, b]

vers R, notée
∫ b

a

dite intégrale sur [a, b] vérifiant les propriétés suivantes :

(i)
∫ b

a

f + g =

∫ b

a

f +

∫ b

a

g ; (pour f, g continue sur [a, b])

(ii)
∫ b

a

αf = α

∫ b

a

f pour tout α ∈ R.

(iii)
∫ a

a

f = 0

2 Théorème

On reprend les notations de la définition. Pour x ∈ [a, b], on pose : F (x) =

∫ x

a

f(t)dt.

Alors F est la primitive de f qui s’annule en a, c’est-à-dire :
F est dérivable, F ′ = f et F (a) = 0.

3 Propositions

1. Si a ⩽ b, f, g continues sur [a, b] et f ⩽ g, alors :
∫ b

a

f(t)dt ⩽
∫ b

a

g(t)dt

2. Relation de Chasles :
∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

3. Si on a : F (x) =

∫ u(x)

v(x)

f(t)dt, alors F est dérivable et on a :

F ′(x) = u′(x)f(u(x))− v′(x)f(v(x)).

4.
n∑

k=0

∫ uk+1

uk

f(t)dt =

∫ un+1

u0

f(t)dt (Télescopage).
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4 Une inégalité utile : méthode des rectangles

Soient n ∈ N∗ et f continue, croissante sur [n, n+ 1], alors il est facile de montrer
que : ∫ n

n−1

f(t)dt ⩽ f(n) ⩽
∫ n+1

n

f(t)dt.

car ∀t ∈ [n− 1, n] : f(t) ⩽ f(n) et ∀t ∈ [n, n+ 1] : f(n) ⩽ f(t).
De même si f est décroissante on a :∫ n+1

n

f(t)dt ⩽ f(n) ⩽
∫ n

n−1

f(t)dt.

5 Théorème de la moyenne

Soit f continue sur [a, b], alors ∃c ∈ [a, b] : f(c) =
1

b− a

∫ b

a

f(t)dt.

C’est le TAF appliqué à : F : x →
∫ x

a

f(t)dt sur [a, b].

6 Interprétation géométrique∫ b

a

f est l’aire de la surface entre Cf et la droite y = 0 sur l’intervalle délimitée par x = a

et x = b
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7 Somme de Riemann

Soient n ∈ N∗ et f continue sur [a, b], on pose : Sn =
b− a

n

n∑
k=1

f

(
a+

k(b− a)

n

)
.

Alors

Sn −→
+∞

∫ b

a

f(t)dt

La démonstration de cette propriété est simple si la fonction f est monotone : méthode
des rectangles + télescopage. Dans le cas général, il faut passer par la construction des
intégrales.

→ Exemple : On veut calculer la limite de la suite : Sn =
n∑

k=1

n

n2 + k2
. On a :

Sn =
1

n

n∑
k=1

1

1 +
k2

n2

−→
+∞

∫ 1

0

dx

1 + x2
=

π

4
.

Dans les sommes, on cherche toujours à faire apparaître une fonction de
k

n
.

8 Calcul pratique des intégrales

8.1 Changement de variable

Soient α, β ∈ R tel que α < β. Soient f : [a, b] → R une application continue et
φ : [α, β] → R une application dérivable à dérivée continue tel que φ([α, β]) ⊂ [a, b].
Alors : ∫ φ(β)

φ(α)

f(x) dx =

∫ β

α

(f ◦ φ)(t) · φ′(t) dt

→Exemple : Calculons : I =

∫ 1

0

e2x

ex + 1
dx.

Pour cela, on pose u = ex. Alors on a :
- x = ln(u)

- dx =
du

u
- x = 0 =⇒ u = 1 et x = 1 =⇒ u = e. Donc :

I =

∫ e

1

u2

u+ 1

du

u
=

∫ e

1

u

u+ 1
du =

∫ e

1

u+ 1− 1

u+ 1
du =

∫ e

1

1− 1

u+ 1
du = [u− ln(u+ 1)]e1

D’où : I = e− 1− ln

(
e + 1

2

)
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8.2 Intégration par partie

On a : ∫ b

a

u(x)v′(x)dx =
IPP

[u(x)v(x)]−
∫ b

a

u′(x)v(x)dx.

→Exemple : Calculons : I =

∫ e

1

ln(t)d(t).

On pose u(t) = ln(t) et v′(t) = 1 alors : u′(t) =
1

t
et v(t) = t

Donc I = [t ln(t)]e1 −
∫ e

1

dt = e + 1− e = 1.

8.3 Cas particuliers des fractions rationnelles

Le calcul des intégrales des fractions rationnelles réelles revient toujours à l’un de ces
deux cas :
1- R(x) =

2x+ a

x2 + ax+ b
, ce cas est simple cas R est de la forme

u′

u
dont les primitives se

calculent en fonction du ln |u|.
2- R(x) =

1

x2 + ax+ b
, ici on a 3 cas :

(i). Si ∆ > 0, le polynôme admet 2 racines distinctes x1, x2 telle que par exemple x1 ̸= 0,
et on écrit :

R(x) =
1

(x− x1)(x− x2)
=

1

x1

(
1

x− x1
+

x2 − 1

x− x2

)
et on revient au cas 1

(ii). Si ∆ = 0 on a : R(x) =
1

(x− x0)2
=

u′

u2
dont on connaît une primitive :

−1

u
.

(iii). Si ∆ = a2 − 4b < 0, on a alors :

R(x) =
1

(x− a
2)

2 − a2

4 + b
=

1

(x− a
2)

2 + c2
=

1

c

1/c(
x−a

2

c

)2

+ 1

avec c =
√

b− a2

4 .

Donc l’une des primitives est :
1

c
arctan

x− a

2
c


Si on a une fraction rationnelle, on revient toujours à ces cas par linéarité de

∫
, donc pas

la peine de paniquer si le calcul n’applique pas directement ces règles.
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8.4 Règles de Bioche

Si on veut intégrer une fraction rationnelle en sin , cos : R(sinx, cosx) on peut utiliser
les règles suivantes pour diminuer la difficulté :
- si R(sinx, cosx)dx reste inchangé en changeant x en π − x, on pose t = sinx
- si R(sinx, cosx)dx reste inchangé en changeant x en −x, on pose t = cosx,
- si R(sinx, cosx)dx reste inchangé en changeant x en π + x, on pose t = tan(x).

Exemple :

On veut calculer
∫

sin3 x

1 + cos2 x
dx. Le terme sous le signe

∫
reste invariant en changeant

x en −x (il faut prendre en compte le dx ), on pose donc t = cosx. On a dt = − sinxdx,
donc le calcul se ramène à celui de la primitive∫

1− t2

1 + t2
(−dt) =

∫ (
1− 2

1 + t2

)
dt = t− 2 arctan t+ k.

Il reste à remplacer t par cosx, ce qui donne∫
sin3 x

1 + cos2 x
dx = cosx− 2 arctan(cos x) + k

8.5 Fonctions trigonométriques

On veut calculer les primitives
∫
sinm x cosn xdx, où m,n ∈ N. Deux cas se présentent :

→ L’un des entiers m ou n est impair (par exemple n = 2p+ 1 ). On a alors∫
sinm x cosn xdx =

∫
sinm x

(
1− sin2 x

)p
cosxdx

En effectuant ensuite le changement de variable t = sinx, on se ramène à la primitive∫
tm

(
1− t2

)p
dt qui est facile à calculer.

→ Les entiers m et n sont pairs. On linéarise, en exprimant sinm x cosn x comme com-
binaison linéaire de fonctions de la forme cos kx et sin kx. Par exemple, pour calcule une

primitive de cos4 x, on écrit cosx =
eix + e−ix

2
, d’où

cos4 x =
1

8

(
e4ix + e−4ix

2
+ 4

e2ix + e−2ix

2
+ 3

)
=

cos 4x

8
+

cos 2x

2
+

3

8

d’où on déduit facilement la primitive recherchée.
Fractions rationnelles en sinus et cosinus. On veut calculer une primitive d’une Fractions

rationnelles en sinus et cosinus. On veut calculer une primitive d’une fonction de la forme
R(sinx, cosx) où R est une fraction rationnelle en deux variables.
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On s’en sort toujours en effectuant le changement de variable t = tan(x/2). Comme

dt =
1

2

(
1 + t2

)
dx, le calcul se ramène à celui de

∫
R

(
2t

1 + t2
,
1− t2

1 + t2

)
2dt

1 + t2
, c’est-à-

dire à celui d’une primitive d’une fraction rationnelle. En procédant de la sorte, on trouve
les primitives suivantes, qu’il faut retenir :∫

dx

sinx
= ln

∣∣∣tan(x
2

)∣∣∣ et
∫

dx

cosx
= ln

∣∣∣tan(x
2
+

π

4

)∣∣∣ .
Cette méthode est souvent laborieuse car elle amène à calculer des primitives de fractions
rationnelles dont le dénominateur est de degré élevé. On commence en général par essayer
d’appliquer l’une des règles de Bioche.

8.6 Exemples de primitives classiques

On note F une certaine primitive de f sur un intervalle I

1. I ⊂ R∗, f(x) = xα avec α ̸= −1, alors F (x) =
xα+1

α + 1
+ k où k ∈ R.

2. R, f(x) =
1

1 + x2
alors F (x) = arctan(x) + k avec k ∈ R.

3. I ⊂ R∗, f(x) = 1
x , alors F (x) = ln(|x|) + k où k ∈ R.

4. I ⊂ R, f(x) = sin(x), alors F (x) = − cos(x) + k où k ∈ R.

5. I ⊂ R+, f(x) = ln(x), alors F (x) = x ln(x)− x+ k où k ∈ R.

6. I ⊂
]
−π

2
+ kπ,

π

2
+ kπ

[
, f(x) =

1

cos2(x)
, alors F (x) = tan(x) + k où k ∈ R.

7. I ⊂]kπ, (k + 1)π[, f(x) =
1

sin2(x)
, alors F (x) = − 1

tan(x)
+ k où k ∈ R.

8. I ⊂
]
−π

2 + kπ, π2 + kπ
[
, f(x) = tan(x), alors F (x) = − ln | cos(x)|+k où k ∈ R.

9. I ⊂]kπ, (k + 1)π[, f(x) = 1
sin(x) , alors F (x) = ln

∣∣tan (x2)∣∣+ k où k ∈ R.

10. I ⊂]kπ, (k + 1)π[, f(x) = cot(x), alors F (x) = ln | sin(x)|+ k où k ∈ R.

11. I ⊂
]
−π

2
+ kπ,

π

2
+ kπ

[
, f(x) = 1

cos(x) , alors F (x) = ln
∣∣tan (x2 + π

4

)∣∣ + k où
k ∈ R.

12. I ⊂
]
−π

2 + kπ, π2 + kπ
[
, f(x) = tan2(x), alors F (x) = tan(x)− x+ k où k ∈ R.

13. I ⊂ R, f(x) = ch(x), alors F (x) = sh(x) + k où k ∈ R.

14. I ⊂ R, f(x) = 1
ch2(x)

, alors F (x) = th(x) + k où k ∈ R.

Avec : ch(x) =
ex + e−x

2
, sh(x) =

ex − e−x

2
et th =

sh
ch
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